lunes, 25 de febrero de 2013

Puerta OR-exclusiva (XOR):



La puerta lógica OR-exclusiva, más conocida por su nombre en inglés XOR, realiza la función booleana A'B+AB'. Su símbolo \oplus (signo más "+" inscrito en un círculo). En la figura de la derecha pueden observarse sus símbolos en electrónica.
La ecuación característica que describe el comportamiento de la puerta XOR es:
F = A \oplus B\, |- F=\overline{A}B + A\overline{B}\,
Su tabla de verdad es la siguiente:
Tabla de verdad puerta XOR
Entrada AEntrada BSalida A \oplus B
0
0
0
0
1
1
1
0
1
1
1
0
Se puede definir esta puerta como aquella que da por resultado uno, cuando los valores en las entradas son distintos. ej: 1 y 0, 0 y 1 (en una compuerta de dos entradas). Se obtiene cuando ambas entradas tienen distinto valor.
Si la puerta tuviese tres o más entradas , la XOR tomaría la función de suma de paridad, cuenta el número de unos a la entrada y si son un número impar, pone un 1 a la salida, para que el número de unos pase a ser par. Esto es así porque la operación XOR es asociativa, para tres entradas escribiríamos: a\oplus(b\oplusc) o bien (a\oplusb)\oplusc. Su tabla de verdad sería:
XOR de tres entradas
Entrada AEntrada BEntrada CSalida A \oplus B \oplus C
0
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
1
0
1
0
1
1
0
0
1
1
1
1
Desde el punto de vista de la aritmética módulo 2, la puerta XOR implementa la suma módulo 2, pero mucho más simple de ver, la salida tendrá un 1 siempre que el número de entradas a 1 sea impar.

No hay comentarios:

Publicar un comentario